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We present a method for making rigorous various arguments which predict that 
certain situations are unstable because of a balance of energy vs. entropy. As 
applications, we give yet another proof that the two-dimensional plane rotor has 
no spontaneous magnetization and we make rigorous Thouless' arguments on 
the one-dimensional Ising model with coupling J /n  2. 
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1. INTRODUCTION 

One of the most  appealing heuristic devices for unders tanding when a 
phase transition will take place is to consider the balance of energy versus 
entropy. Probably  the simplest example is the well-known (9'27) heuristic 
a rgument  for the absence of phase transitions in one-dimensional  systems 
with short-range forces: Suppose that there were two distinct phases with 
the same bulk free energy. Then, starting with a single phase, we can insert 
a droplet of size L of the other phase: the energy cost is finite ( independent  
of L), since the forces are short range; while the droplet can be inserted in 
approximately  N / L  places (where N is the length of the system), leading to 
an entropy gain on the order  of k l n ( N / L ) .  Thus, for any temperature 
T > 0, the free energy change c o n s t -  k T I n ( N / L )  is negative for suffi- 
ciently large N;  that is, the putative pure phase is unstable. 
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An analogous heuristic argument (8'9'1~ leads to the expectation that 
the d-dimensional nearest-neighbor plane rotor has no spontaneous magne- 
tization for d ~ 2: For suppose otherwise. Then, starting with the magne- 
tized phase, we can flip all the spins in a block of size L; to do this without 
costing too much energy, we surround this block by L more shells with 
spins rotated by angles 7r(l - 1/L),~r(1 - 2 / L )  . . . . .  It is easy to see that 
the energy cost is on the order of L d-2, while the entropy gain is on the 
order of k l n ( N d / L d ) .  Thus, for d ~< 2, the putative magnetized phase is 
unstable at any temperature T > 0. 3 

In both of the above examples, the heuristic expectation has been 
rigorously proven by several different methods: see Refs. 23, 24, 3 for the 
one-dimensional case, and Refs. 18, 4, 17, 13 for the two-dimensional plane 
rotor. However, none of these proofs directly follows the heuristic argu- 
ment. Our main goal here is to show how to estimate entropy shifts in such 
a way that the heuristic entropy-energy arguments--in the models dis- 
cussed above as well as others--can be made rigorous. After the comple- 
tion of our work, we received a preprint of Pfister (2I) which is closely 
related and which we shall discuss shortly. 

Of course, the heuristic arguments presented above suffer from some- 
what vague notions of "phase" and "entropy." For instance, in the plane- 
rotor example one seems to be taking "magnetized phase" to mean "a 
configuration with all spins aligned." But this approach-cons ider ing  only 
the ground-state configuration and selected finite-energy perturbations 
thereof is suspect, since at temperature T > 0 it is infinite-energy configu- 
rations which are really relevant. A much better version of the entropy- 
energy argument is implicit in the work of Landau and Lifshitz (14) (deve- 
loped further by Thouless(a6)), who appeal essentially to the Gibbs varia- 
tional principle: any translation-invariant equilibrium state O must maxi- 
mize the quantity s(p) - p(A,) .  Here s(p) is the entropy per unit volume of 
the state (probability measure) p, and o(A ~) is the expectation value in the 
state p of the energy per unit volume associated with the interaction q); see 
Israel (11) or Simon (25) for notation, history, and precise proofs. The idea is 
then: given a translation-invariant state p with nonzero magnetization, we 
construct a new translation-invariant state o' by randomly flipping various 
spins; if we can show that 

s(p') - p ' (A , )  > s(o ) - p ( A . )  (1.1) 

then it follows that O cannot have been an equilibrium state. 

3 The alert reader may wonder why this conclusion is not also valid for d > 2. The answer, 
which will become apparent when we try to spell out this argument in complete rigor, is that 
the excess of entropy over energy must be shown for arbitrarily large L, with N large but not 
too large. See Sections 2-5, below. 
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Actually, in many of our arguments we can deal with finite-volume 
states only; this turns out to simplify matters considerably. Then the 
version of the variational principle that we need is a simple consequence of 
Jensen's inequality: 

T h e o r e m  1.1,  Let d/~ o be a probability measure, and let f ,  g be 
positive functions with f fdp,  o = f g  d/~ 0 = 1. Now define 

s ( U )  = - f fln f o l i o  (1.2) 

Then 

+ r  g)fdtz  o < 0 S ( f )  (1.3) 
J 

Proof.  The left-hand side of (1.3) is just 

f in(glf)i@o<, ln(fg@o):0 
where the inequality is Jensen's inequality for the probability measure fdl~ o 
and we use the concavity of the log. [] 

To describe the idea of our construction, imagine picking at random 
one of n distinct blocks of spins and flipping all the spins in this block, 
leaving all other spins unaltered. One imagines this extra randomness as 
increasing entropy. If one were dealing with n disjoint events, the increase 
would be ln n, i.e., if u i is the probability measure f d/~ 0 and the f ' s  have 
disjoint supports, then 

Of course, if t he f ' s  are not disjoint, then one will not gain a full lnn, e.g., if 
ul . . . . .  Pn, there is obviously no lnn in (1.4). In Section 2, we obtain 
lower bounds on 

in case the f ' s  are only "almost disjoint." Of course, for flipping distinct 
sets of spins to yield almost disjoint measure we will need to find functions 
F whose probability distributions are very different in the different Pi. The 
natural choice for F will be the total magnetization of the block being 
flipped; to get sufficiently distinct probability distributions, we will need to 
have the magnetization in the unflipped state nonzero (and the block size 
sufficiently large). In this case we could hope to obtain a violation of (1.3), 
and thereby conclude that the magnetization in any equilibrium state must 
be zero. 
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As a warm-up to the method, we prove in Section 3 that a one- 
dimensional Ising model with pair interaction J ( i - j )  obeying ~i[i] [J(i)] 
< oo has no spontaneous magnetization; a stronger result is originally due 
to Ruelle. (23) In Section 4 and the Appendix, we discuss the absence of 
spontaneous breaking of continuous symmetries in two dimensions. Section 
5 is the most subtle of the models we consider, in that an infinite energy 
shift, albeit a logarithmic one, is balanced by an entropy change. 

We close this introduction by comparing our method with its closest 
relative, one which, rather than discussing energy balanced against entropy, 
describes certain finite-energy situations. In its simplest version, this argu- 
ment applies to situations in which a uniformly bounded energy change 
results from an arbitrary change of boundary conditions: this is the 
situation in Section 3 but not Section 4. This version was discovered by 
Sakai (24) and rediscovered by Bricmont eta/., (3) both of whom used it to 
recover Ruelle's result on uniqueness of state for one-dimensional systems 
with ~,]illJ(i)] < o~. Recently, Pfister (21) found a beautiful argument 
which applies to two-dimensional systems with continuous symmetries: 
while the initial steps are, of necessity, somewhat different, the final steps 
are identical to those in the Sakai argument. 

The Pfister argument has a critical advantage over ours: it deals with 
all equilibrium states, while we are typically limited to proVing that some 
symmetry is unbroken in translation-invariant equilibrium states. But our 
method has its own advantages: it does not require information on disinte- 
gration of equilibrium states with respect to the algebra of observables at 
infinity, and thus it seems to us more intuitive. Moreover, at the present 
moment it seems more systematic. Most importantly, we can say something 
about cases like those of Section 5 with infinite energy shift. 

2. ENTROPY OF MIXTURES 

In this section we want to compare the entropy of an average 
n - l ~ = l p i  with the average entropy. This "entropy of taking a statistical 
mixture" should be distinguished from the often-discussed "entropy of 
mixing" which, while related, is distinct. We define S by (1.2). 

Theorem 2.1. Let d/~ 0 be a probability measure. Let dpi--fdtt o, 
i = 1 , . . . ,  n be n probability measures. Suppose that there is a c >/0 such 
that for each i there exixts a set A i with 

(i) ~,(A:) <. c/n 

(ii) ~ ~,,(A,) <~ c 
j~-i 
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where Af is the complement of A i. Let f =  n-l~'i=lf. Then 

S(f)  > n -1 ~, S ( f )  + Inn - 4c '/2 (2.1) 
i=1 

Proof 
S ( f ) -  n - ~ S ( f )  - l nn  

i 

= n - 1 { - i ~ = , f  fiiln[(~, fj)/filcl~o } 

I [J ( ~>2n-1~-]i=, - l n  dtt o f2 +j~if j  f (2.2) 

2n-' ~ f d/~ o fJi (2.4) 
i=1 i 

where (2.2) uses Jensen's inequality and the convexity of - In ,  (2.3) uses 
(a -t- b) I/2 <~ a 1/2 -t- b 1/2, and (2.4) uses ln(1 + x) < x. For i fixed use the 
Schwarz inequality to get 

1/2 1/2 / \1/2 

f d~O(kjva ffj l] = (dAi d~o(j~ifJfii ) "q- f'Afdl~o(j~ifJfi ) 

+ p,( ic) 5(A, c) 
j~i J 

~< l "  c ' / 2 +  (c/n)l/2(n -- 1)1/2< 2c 1/2 

which given (2.4) proves (2.1). �9 

3. FINITE ENERGY SHIFT: ONE DIMENSION 

As an illustration of our method, let us prove the following theorem. 

Theorem 3.1. The one-dimensional sp in- l /2  Ising ferromagnet with 
coupling J ( i - j) >1 0 obeying 

]rlJ(r ) < oo (3.1) 
r~O 

has zero spontaneous magnetization. 
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Remarks. (1) By correlation inequalities, (9) the result, once proven 
for J(n) > O, is true for all J(r) with (3.1) replaced by ~,r@olrJ(r)[ < oo. 

(2) While we exploit correlation inequalities in the proof for technical 
ease, they can be avoided. 

(3) Ruelle [23] has proven the stronger result that (3.1) implies a 
unique equilibrium state. This result can be proven by Sakai's method (24) 
(see Ref. 3), which is probably the "best" proof. In the ferromagnetic case, 
this also follows from Theorem 3.1 together with the theorem of Lebowitz 
and Martin-L6f. (16) 

Proof. Let ( ) + j  denote the plus-boundary-condition state in the 
region i = l, - l + 1 . . . .  , I; P+,t will denote probabilities in that state. Let 
( )+,~ denote the limiting state obtained as l--> oo; correlation inequalities 
imply that ( )+,~ is translation invariant and ergodic (in fact extremal, 
hence mixing). We must prove that 

(%)+,~  = m (3.2) 

is zero, so suppose m ~ 0. Let c > 0 be given. We first claim that we can 
find k such that for each block B of k successive spins and each I so large 
that B c { -  l . . . . .  l }, we have that 

P+ l( 2 ai < 0] < ,  (3.3) 
' \ i E B  ] 

For let 

and 

i ~ B  I + , l  

F =  s  
i ~ B  

Then 

P+,'( 2 ~ < 0] < a-2(F 2)+J (3.4) 
\ i E B  / 

But, by correlation inequalities [GKS for (3.5), GHS for (3.6)]: 

a >1 mk (3.5) 

[(oioj)+,,- (o,)+,l(Oj)+,l] ~-~[(oioj)+,oo - (o,)+,oo(Oj)+,cao] (3.6) 

so (3.4) becomes 

' \ i @ B  i , j ~ B  
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Since rn > 0 by hypothesis, and the quantity in brackets goes to zero as 
k ~ m by ergodicity of ( )+.~,  we have (3.3). 

Given n, first pick k so large that (3.3) holds with e-- 1/n, and then 
pick l so that 2 l +  1 >/ nk. In { - 1  . . . . .  l}, pick n disjoint blocks of k 
successive spins each; call them B L , . . . ,  B n. We will obtain a contradiction 
with Theorem 1.1 by starting with the Gibbs state ( . ) + j  and flipping "at 
random" one of the blocks B t. Explicitly, in (1.3), let dt~0 be the uncoupled 
Ising measure, and let g be the Gibbs density for ( . ) + j  with respect to 
d~o, i.e., 

In g = (const) + ~ J(i -j)oioj+ ~ J(i - j )o j  (3.7) 
- l <  i < j <  l [i[>l 

[Jl-< l 

Let f (1 < i < n) be the function obtained from g by flipping the spins in 
block B i, and let dp~ = f d/t 0. By the symmetry of dlx o, we have 

S ( f )  = S(g) (3.8) 

Let A i = {o[~jE~o j < 0}. By (3.3) with the assumed value e = I/n, condi- 
tions (i) and (ii) of Theorem 2.1 hold (with c = 1), so if f =  n-~7=~f, then 
by (2.1) and (3.8), 

S( f )  >1 S(g) + Inn - 4 (3.9) 

On the other hand, (3.7) and the elementary estimate 

J ( i - j )  = E rJ(r) = 1 E ]rlJ(r) (3.10) 
i~>O r>O r#O 
j < O  

shows that the energy shift is 

AE -f(g-f)ln g dlxo << 2 ~ [rlJ(r ) (3.11) 
r:r 

[Notice, by the way, that it would be no good to use 

2 J ( i - j )  < k ~, J(r) (3.12) 
i > 0  r>O 

- k < ~ j < O  

in place of (3.10), since k is n-dependent and there would be no guarantee 
that k~r>oJ(r ) could be dominated by Inn; indeed, k must grow at least 
as fast as n.] 

Combining (3.9) and (3.11), we conclude that 

+ [ ' f i n  gdl~o>~ Inn - 4 - 2 ~ IrlJ(r) (3.13) S( f )  
. 2  rv~O 

For large n, this contradicts Theorem 1.1; so we conclude that m = 0 since 
we obtain a contradiction if m =/= 0. �9 
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To summarize, we have proven that if the infinite-volume magnetiza- 
tion were nonzero, then we could introduce enough extra randomness into 
a finite-volume Gibbs state so that the entropy gain more than compensates 
the energy gain, violating the fact that the Gibbs state is an absolute 
maximum in the Gibbs variational principle. 

4. FINITE ENERGY SHIFT: TWO DIMENSIONS 

Our goal in this section is to prove the following theorem. 

Theorem 4.1. The spontaneous magnetization is zero in a two- 
dimensional ferromagnetic plane rotor model with pair coupling J ( i - j )  
obeying 

lil2J(i) < ~ (4.1) 
i~O 

Remarks. (1) In the Appendix we shall extend this result in several 
ways (although we will strengthen the hypothesis to require J be finite 
range): we will avoid correlation inequalities and thereby deal with much 
more general "spins" than plane rotors and we will prove that every 
translation-invariant state has the continuous rotational symmetry. 

(2) For earlier results of this genre, see Refs. 18, 4, 17, 13, and 21. 
Pfister (2~) proves a strictly stronger result. 

Proof. We emphasize those steps which differ from those in Section 
3. We let ( )+,t stand for the states in a box of size ( 2 / +  1 ) x  (2l + 1) 
centered at (0, 0) with all spins outside the box fixed at angle 0 = 0. We let 
P + j  stand for the corresponding probabilities and define 

m = ~ o i ) + ,  ~ 

Since we want to show that m = 0, we suppose that m v ~ 0 and will derive a 
contradiction. We claim that for any e > 0, we can find k so that for any 
k x k block B of spins, there is an l 0 so that 

P + j (  ~] o} ') < 0 ) < c  (4.2) 
i @ B  

for l >/ l 0, where o} 1), 0}2) are the two components of the spin o i. Notice that 
our claim is slightly weaker than the analogous claim in Section 3 in that l 0 
can be B dependent. 

The proof of the above claim is basically the same as that of the 
analogous claim in Section 3 except that (3.6) might fail since we no longer 
have a GHS inequality. However, since ( - ) + , ~  is ergodic (in fact, mix- 
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ing), (2'19) we can still arrange for 

k 4 ~ [(o,~j)+,,- (,,,)+,,(,,j~+,,] - h(l) 
i,jE B 

to be arbitrarily small for l = oo and then can use the fact that for k, B 
fixed h(l)---> h(oe) as l---> oc. 

Now given n, let e = 1/n  and pick k so that (4.2) holds with this value 
of e. Choose n disjoint 3k • 3k blocks/~l . . . . .  B, and then choose l 0 so 
that 

(4.3) 
~ jEBi 

for l < i < n and l > 10, where B i is the k x k block concentric with /~i. 
Let v} l) be the state obtained from ( )+,l by rotating the spins in /~ as 
follows: spins in B~ are rotated by 7r, those in the square of neighbors of B i 
are rotated by ~r(1 - k - l ) ,  those in the next square by ~r(1 - 2k -1) . . . . .  
and those on the border of /~. by ~ / k .  Let t, = n - l ~ = l v i  be the state 
where one picks one block at random and "rotates" it. Let f be the density 
of l,, and g the density of ( )+,t. Then, by Theorem 2.1 and (4.3) 

S ( f )  >1 S (g )  + l n n  - 4 (4.4) 

The energy shift 

AE =_f (g - / ) l n  gd~o 

has two terms: interactions of spins in/ t i  with the exterior of the (2l + l) • 
(2l + 1) region and interactions within this region. By taking l large we can 
arrange that the former term is arbitrarily small. The latter term is a sum of 
terms of the f o r m  ( ( R i o i ) . ( R j o j ) ) + , l -  (Oi'Oj)+,l, where R i and Rj are  

rotations. Obviously 

(Rjoj)  +,  = [ (R j-'R, )0,]. +., 

Moreover, 

((Roi) �9 oj)+, t = (cos(0 + q0, - q0j))+,z = (cos0)(cos(e& - rpj))+,, (4.5) 

since (sin(% - q0j))+,l = 0 by the symmetry of ( )+,t- (Here o/(1) = cos%, 
o} 2) = sinq0i, and 0 is the angle associated with the rotation R,) Thus 

]((Roi) . oj) +, z - (o, oj)+,zl <~ �89 2 

and so 

I ( (Rso3"(RjoS))+, , -  (o, oj)+,z[ < 1(0,. - 0 j . )  2 (4.6) 

Using (4.6) and the hypothesis (4.1), a tedious but straightforward geomet- 
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ric argument shows (as usual (s 10,21,27)) that 

AE < const (4.7) 

independent of k (and l). From (4.4) and (4.7), one derives a contradiction 
to Theorem 1.1 as in Section 3. �9 

5. THE THOULESS EFFECT 

Our method shows its mettle in the discussion of one-dimensional 
models with coupling near to or precisely J(n)  = Cn-2 (n =/= 0). Based on 
the work of Thouless (26) and Anderson et al., (1) one expects the following: 

(i) If the falloff is strictly slower than n-2, in the sense that 

then there is no spontaneous magnetization at any temperature. 
(ii) If J(n)  >1 Cn-2 with C > 0, then there is spontaneous magnetiza- 

tion at low temperatures. 
(iii) If J(n)  = Cn-2 with C > 0, there is a discontinuous jump in the 

magnetization from zero to a strictly positive value as the temperature is 
decreased (the "'Thouless effect"). 

So far, none of these expectations has been rigorously proven. How- 
ever, Rogers and Thompson (22) has quite recently proven the analog of (i) 
with lnn replaced by (inn)l/a; weaker results of this genre were found 
earlier by Ruelle (23~ (see also Section 3) and Dyson. (5'7) Similarly, Dyson (7) 
has proven the analog of (ii) with n -2 replaced by n -2 lnln(n + 3); this 
result was rediscovered by Kolomytsev and Rokhlenko. (12~ In addition, 
Dyson (7) has proven (iii) for a closely related model (the hierarchical 
model). 

We will not prove any of (i)-(iii) completely, but we will establish the 
following results related to (i) and (iii): 

Theorem 5.1. Consider a one-dimensional spin- l /2  ferromagnetic 
Ising model with pair coupling obeying (5.1). If 

(o~oj)+,~ - (oi)+,~(o/)+,~ ~< C[I i - J l  + 1] -~' 

for some C, a > 0, then the spontaneous magnetization m ~-(oi)+, ~ is 
zero. 

Theorem 5.9. Consider a one-dimensional spin- l /2  Ising model 
with pair coupling J(n) = Cn-2 (n v ~ 0) (absorb/3 into C). Suppose that 

X ~ E  [(OiO0)+,oo -- (Oi)+,~ ~ ] < OQ (5.2) 
i 
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Then either m = 0 or 

m /> (4C) -1/2 

689 

(5.3) 

Theorem 5.3. Let m(fi)  be the ( )+,~ magnetization for a one- 
dimensional spin-1/2 Ising ferromagnet with J(n) = fin-2, and let 

_- im sup o0 + - B I;f) 
i -~oo 

Then, for each fl, either m(f l )  = 0 or 

m( fl ) >~ (4fl )-  l/2 minI l ,a( fl ) ] (5.4) 

In particular, if m ( f l ) > O  for f l> f l c  and l i m ~ c m ( f l ) = 0 ,  then 
lim#~, a ( f l )  = 0. 

Remarks. (1) We emphasize that the basic strategy of this section, 
indeed that of the whole paper, is motivated by a paper of Thouless (26) ; our 
goal was to make his argument rigorous. Thouless even makes the distinc- 
tion between Theorem 5.2 and Theorem 5.3 in that he emphasizes that his 
basic result (5.3) assumes "normal" fluctuations (i.e., variance going as 
N 1/2 with N the number of spins) of the total magnetization. 

(2) The inequality (5.3) is identical to that in Thouless(26); however, 
the reasoning differs somewhat in that at two different places he has extra 
factors, one of 1/2 and one of 2, which cancel. Alternate versions of 
Thouless' argument, due to Dyson ~6) and Ojo, (2~ yield the stronger conclu- 
sion m /> (2C)-1/2; this might be susceptible to proof, as we shall now 
explain. Thouless only claims an entropy gain of 1/21nN where we get 
InN because he forces himself to look at restricted configurations (we 
emphasize that the correct thing is to look at states, not configurations). 
However, Thouless only gets half the energy shift we do because he flips all 
spins to the left of some point rather than a block of just n spins; he then 
looks only at the energy on one side of the block rather than on both sides 
as we do. It is not clear to us that this is legitimate since it ignores the 
interaction energy between the flipped spins and the boundary-condition 
spins; the latter spins cannot simply be ignored, since they are needed to 
produce a magnetization. Nevertheless, since we know for most tempera- 
tures the zero-boundary-condition state is (( �9 )+,~ + ( �9 )_ ~)/2,  (15) it 
might be possible to improve (5.3) to read m ~> (2C) -1/2. 

Proof of Theorem 5.2. Consider ( )+,(n)j, the plus-boundary- 
condition state with 4l + n 2 spins viewed as n blocks, B l , . . . ,  B~, of n 
spins each with 2/extra  spins at each end. As in Section 3, using GKS and 
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GHS inequalities, we see that if m ~ 0 

P+,(,,),,( j~BiOJ < 0) • n - l ( x / m  2) (5.5) 

Thus, if f is the density obtained from g, the Gibbs density, by randomly 
flipping one block of spins, we have that 

S(T)  >>- S (g )  + l n n  - 4X1/2m -1 (5.6) 

on account of (5.5) and Theorem 2.1. On the other hand, the energy shift is 

h E  = n - l  ~ A E  i 
i = 1  

with 

AE i = 2C ~ (Ojak)+,(,),,[ j -  k[ -2 
jEBi  
k ~ B i 

Now let A _+ be blocks of l spins at each edge of B = U B i, and let 

m,, t = sup ( ~ )  +,(,),l 
j ~ A + U A _ U B  

It is easy to see that 

(5.7) 

4Cm 2 >/ 1 �9 

lim rn, d= m (5.8) 
l--> oo 

uniformly in n. Moreover, by GHS inequalities, 

2 (OjOk) +,(,), , <~ m,, l + [(OjOk)+,oo - m z] 

if j ,  k E A+ U A U B. The quantity in square brackets goes to zero as 
Ij - k l ~  ~ since ( )+,oo is mixing, and thus for any ~ > 0, 

AE i <<, C1, ~ + C2n1-1 + 2C ~, rn 2 ( .,, +  )lJ- k1-2 
j ~: Bi 
k~Bi 

The Cl, E term is from the square bracket contributions in the region where 
the square bracket is larger than e; note that C1, is uniform in n, since only 
sites j ~ B i within a fixed distance of the boundary of Bi contribute here. 
The C 2 term is from contributions with k ~ A+ U A U B. Taking l > n, 
we see that 

AE < C3, E -[.- 4 C ( m 2 / +  e)lnn 

Using (5.8), we see that to avoid a contradiction to, Theorem 1.1, we need 
that 



Rigorous Entropy-Energy Arguments 691 

Proof of Theorem 5. 3. We basically follow the above proof but 
now we take n blocks of k spins each. (5.5) is now replaced by 

P r o b < ( m k )  -2 ~-]~.< [(oiOj) -m2] 
O~i,j~k 

~ k - a (  r 
if a < 1, so we need to take k ~ n  t/a(l~) to gain inn in entropy. The 
coefficient of Inn in the energy change is then 4Cm2/a(B).  For this to be 
larger than 1, (5.4) must hold. [] 

Proof of Theorem 5. 1. If we mimic the proof of Theorem 5.3, the 
condition (5.1) implies that the energy change cannot compensate for the 
In n entropy increase. [] 

APPENDIX. A RESULT OF DOBRUSHIN-SHLOSMAN TYPE 

We want to use the basic ideas of this paper to prove the following 
result: 

Theorem A.1. Consider a two-dimensional model with arbitrary 
compact state space [2 at each site. Consider a finite-range interaction. 
Suppose that a connected compact Lie group G acts on f~ such that (i) the 
interaction is invariant under applying the same group element to each 
spin; and (ii) the interaction is twice-continuously-differentiable in the 
group parameters under rotations of different spins by different group 
elements. Then every translation-invariant equilibrium state is invariant 
under the global group action. 

Remarks. (1) This is strictly weaker than the result of Dobrushin 
and Shlosman (4) since they prove that every equilibrium state, whether 
translation invariant or not, is invariant under the global group action; 
Pfister (21) also proves this and allows interactions satisfying a condition 
slightly weaker than (4.1). 

(2) Our reason for including this result is to illustrate that the use 
made above of correlation inequalities is not really necessary. The restric- 
tion to finite-range interactions [instead of (4.1)] is probably not essential; 
but in view of the beautiful proof of Pfister, (2]) it hardly seems worthwhile 
to bore both ourselves and the reader trying to rederive this result by our 
methods. 

Proof. We begin with a few preliminary remarks. First, since G is 
generated by its subgroups which are isomorphic to U(I), we can suppose 
without loss that G -- U(1), i.e., label it by a number 0 ~ [0,2~r). Secondly, 



692 Simon and Sokal 

we need only prove that ergodic states are G invariant since every state is a 
limit of sums of such states. Thirdly, if O is the state, R o global rotation, and 
F a function of the spins, we need only show that o(F ~ Ro) = o(F) for 
functions F of finitely many spins. By passing to Fourier coefficients, we 
can suppose that 

F o Roo = - F (A.1) 

for some fixed 0 0 and that 

o(F)  -- m > 0 (A.2) 

or else o(F) will be rotation invariant. 
Pick k so that F is a function of spins in a k • k array and so that k is 

larger than the range of the interaction. Cover Z Z by nonoverlapping k • k 
blocks b~ and let F~ be the translate of F to block b~. By (A.2) and the 
ergodicity of 0, one can, given e, find l so that with B an l • I block of b~ 
blocks (i.e., kl • kl spins) we have that 

\ a E B  

Let B be an 3l • 3l block concentric with B, let r = l / n ,  and pick a cube C 
so large that it contains n disjoint translates B I , . . . ,  B, of B each at least a 
distance k from the exterior of C. Let g be the density of the restriction of p 
to C. Since the interaction has range k we have that, for each ~ ,  

In g = H~, + R~i, (A.4) 

where H 8 is the basic interaction of spins in B with all other spins and R B is 
independent of spins in B (but is generally a very complicated function due 
to averaging over configurations of exterior spins). 

As usual, let f l ,  �9 �9 �9 fn be obtained from g by rotating spins in B i by 
0o, those in the next shell of b~ blocks by (l - 1)Oo/l, those in the next shell 
by ( l - 2 ) 0 o / 1 , . . . .  Let f =  n - l ~ ] ~ .  By Theorem 2.1 and (A.3) we have 

S ( f )  >>- S(  g) + l n n  - 4 

By (A.4), we need only show that the change in p(H~) under the above 
rotation is bounded independently of n. Imagine replacing the above angles 
00, 00(1 - l 1) . . . .  by arbitrary angles 01,02 . . . . .  0 t. Since the interactions 
are rotation invariant and k is the range, the energy change is a function 

A E =  G(O 1 - 0 2 , 0 2 - 0 3  . . . .  ) 

By hypothesis, G is C 2 and by counting up the number of spins involved, 
second derivatives with respect to each of the I variables are bounded by ! 
times a constant. 

Changing a single 0 i - 0 i + j  from zero corresponds to the change of 
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energy for a family  of states with the same entropy.  Thus  by (1.3), all the 
first-order changes must  be zero. For  Oi = (1 - i / l ) O  o, 0 i - Oi+ 1 = Oo/ l ,  so 
since the first derivatives are all zero, AE = [ l ] 1 - 2 [ l C ]  where the first factor  
is the n u m b e r  of variables,  the next  is (A0) 2, and  the last is the above  C 2 
norm.  Thus  AE is bounded  independent ly  of n, so (A.2) leads to a 
contradict ion.  �9 
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